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ABSTRACT 
 

IRRADIATION TESTS HAVE SHOWN THAT U-MO DISPERSION FUEL SUFFERS 
FROM INTERACTION BETWEEN THE FUEL AND THE ALUMINUM MATRIX AT 
HIGHER TEMPERATURE. A POTENTIAL SOLUTION TO MITIGATE THESE 
PHENOMENA IS TO USE A FUEL ALLOY FOIL IN PLACE OF THE FUEL-
ALUMINUM DISPERSION. THIS MONOLITHIC FUEL PROVIDES A LOWER FUEL-
MATRIX INTERFACIAL SURFACE AREA AND A MUCH HIGHER URANIUM 
DENSITY THAN DISPERSION TYPE FUEL. INTERNAL STRESSES WILL ARISE, 
DURING FABRICATION AND OPERATING CONDITIONS, IN THE INTERFACE 
BETWEEN FUEL AND CLADDING MATERIALS DUE TO THE DIFFERENCE IN 
THERMAL EXPANSION COEFFICIENTS AND ELASTIC CONSTANTS. OUR AIM IS 
TO ASCERTAIN THESE PROPERTIES FOR THE GAMMA PHASE IN THE U-MO 
ALLOY FROM THE KNOWLEDGE OF ITS INTERNAL ENERGY AS A FUNCTION OF 
DEFORMATION. INTERNAL ENERGY OF THE DISORDERED PHASE IS OBTAINED 
AS A CLUSTER EXPANSION FROM AB INITIO CALCULATED INTERACTION 
PARAMETERS IN EACH OF THREE DEFORMATION MODES: HYDROSTATIC, 
TETRAGONAL AND TRIGONAL. PRELIMINARY RESULTS ARE PRESENTED THAT 
HAVE SERVED AS A PROOF OF METHOD SUITABILITY. 

 
1. Introduction 
 
Low enrichment reactor fuel program is greatly based in the development of a 
dispersion fuel with density between 8 and 9 gU/cm3. Actual elements consist in a 
dispersion of U(Mo) bcc powder (20 at. % approx) in an Al matrix. The resultant 
compact material is placed between Al cladding and laminated. Though it seemed a 
promising device, post irradiation examination exhibit problems related to interdiffusion 
between Al and UMo alloy [1]. 
An alternative for fixing this problem has been proposed by the use of monolithic fuel, 
this is, by placing a thin sheet of monolithic fuel between Al cladding and thus reducing 
U alloy–Al interaction surface. The whole set is friction welded [2]. In this case 



problems arise from internal stresses produced by temperature changes during 
fabrication and later use inside reactor, due to differences in elastic constants and 
thermal expansion coefficients. If elastic constants are known, element behaviour can be 
evaluated a priori. Although elastic constants can be experimentally measured, we have 
not found that information in literature for U(Mo) alloys.  
The present work is an effort to obtain estimations of these quantities from first 
principles thermodynamics. Results are shown for lattice parameter (a0) and the three 
independent elastic constants of the cubic solid solution U(Mo) as a function of uranium 
concentration.  
Interactions energies of a set of basic clusters are obtained from ordered compounds 
total energy first principles calculations via an inversion method. Afterwards, a 
calculation model is used to reproduce elastic energy that is based in a cluster expansion 
of internal energy of the binary alloy. 
 

2. Model 
 
Internal energy of a multicomponent crystalline structure G can be written as a lineal 
expansion in known binding energies of clusters taken as a basis set [3]:  
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where, G is a crystalline structure characterized by geometry and site occupation; z  is 
the matrix containing the base vectors descibing the lattice; x  is the composition vector; 

)(xG
iζ  is the Structure Correlation Function (SCF) containing geommetry information 

and cluster configuration for structure G; ( )zei  is the Energy Cluster Interaction (ECI) 
depending on the alloy and cluster, and not on the other G characteristics. Sum is 
extended over the (N+1) clusters in the selected approach.  
To stablish the (N+1) values )(zei , at least (N+1) known internal energies ( )zE

jG  are 
needed. These energies can be experimental measured or, as in our case, theoretically 
calculated. We have chosen to use a first principles method based in the Local Density 
Approximation (LDA) [4]. 
The present approach for bcc U(Mo) sustitutional solution includes the empty cluster, 
the point and one pair of first neighbours (N=2). Calculated structures are the pure bcc 
solutions U and Mo (A2, cI2, W type) and the intermetallic compound with B2 structure 
(cP2, CsCl type).  
SCFs from Eq 2 corresponding to U (A2), Mo (A2) and UMo (B2), and structures 
energies ( )zE UA ,2 , ( )zE MoA ,2  and ( )zE UMoB ,2 , can be introduced in either sides of Eq 1 to 
obtain the ECIs by inversion. 
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The SCF corresponding to U(Mo) A2 solid solution is: 
 

( ) ( ) ( )[ ]22 121221 −−= xxxAζ ,       (3) 
 
then we can write the internal energy of the disordered bcc solid solution U(Mo) in 
terms of ECIs and structure corresponding SCF: 
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If dependence of ( )zE UA ,2 , ( )zE MoA ,2  and ( )zE UMoB ,2  with z  base vectors is known, then 
we have a description of variation of internal energy with orientation and magnitude of 
those vectors, this is to say, we can describe variation of internal energy with lattice 
deformation. 
From elasticity theory it is known that change in energy due a small deformation ε  in 
the harmonic approximation can be written as a function of the elastic constants tensor 
C . For cubic symmetry only three constants are needed: 
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We need three sets of independent calculations to determine C11, C12 and C44. 
Deformations can be considered that change the primitive equilibrium lattice vectors 

0
z  

as 
0

.)1( zz ε+= , with 100
az = for the cubic structure, where 1 is the unity tensor and 0a  

is the equilibrium lattice parameter. 
Finally, if we consider an equivalence between variation in elastic energy due to 
macroscopic deformation (Eq (5)) and variation in internal energy due to deformation in 
structure base vectors (Eq (4)), we have a tool to calculate elastic constants for the bcc 
solid solution U(Mo) from first principles thermodynamics. This hypothesis has been 
previously used by other authors and applied to pure elements and intermetallic 
compounds [5-7]. We want to emphasize that it has not been previously used for solid 
solutions.   
Next we can focus on the particular choice of deformations we have employed.  
Applying an hydrostatic deformation (Fig 1) to the crystal gives us the Bulk modulus 
(B0) value and the first relation between C11 and C12:  
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The remaining elastic moduli can be obtained by applying tetragonal and trigonal 
distorsions (Fig 1). 
A tetragonal distorsion can be obtained with a deformation tensor defined as: 
 
 

 
Applying the tensor for several values of δ, and calculating energy density U=E/V, 
another relation between elastic constants and energy can be obtained: 
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The remaining C44 modulus can be calculated from variation in energy after applying a 
trigonal deformation: 
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a)    b)    c) 

Figure 1. Schematic representation of deformations: a) hydrostatic; b) tetragonal; c) 
trigonal. Dashed lines in schemes represent original cubic cell, while solid lines 

represent cell after the corresponding deformation. Plots show Mo Total Energy vs 
volume for hydrostatic deformation, and Mo Total Energy vs deformation parameter δ 

in the other two cases. 

 
The procedure is as follows: deformations in the three modes are applied to the three 
base structures, U, Mo and UMo B2. For each mode Eq (4) is written, thus obtaining the 
dependence of internal energy of the disordered bcc phase with volume, for hydrostatic 
deformation, and with deformation parameter of the bcc solid solution δ in the other two 
cases. Through equations (6) to (8), the corresponding modulus or elastic constants are 
calculated. 
 

3. Results and discussion 
 
Total energy (internal energy) calculations have been performed for the pure U and Mo 
crystals and the ordered compound with equiatomic composition B2 UMo via the Full 
Potential Linearized Augmented-Plane-Wave (FP-LAPW) method implemented in the 
WIN 97.8 code [5]. k mesh consisted in  286 k points in the Brillouin irreducible zone 
for hidrostatic deformations, 792 k points for tetragonal deformations and 2820 k points 
for trigonal deformations. Convergence in energy could be obtained for 0.01 mRy/at in 
hidrostatic and tetragonal deformations, and 0.1 for trigonal deformations.  
Validation of calculations can be found in a previous work [6] (determination of U-Mo 
phase equilibrium diagram) while validation of method was performed through its 
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application to Mo experimental parameters. The reported experimental values for Mo 
lattice parameter and bulk modulus are respectively 3.15 Å [7] and 268 GPa [8], whose 
differences with the calculated in this work (Table I) are within 0.4% and 2%, 
respectively. Thus, the agreement is excellent since typical LDA lattice parameter 1%-
2% smaller than experimental ones [7]. 
Results of our calculations for ordered structures are summarized in Table I. As our 
results come from first principles calculations, uncertanties mostly arise from the fitting 
process. They are in all cases between 2 and 6 GPa for elastic constants, and between 2 
and 5 10-4 Å for lattice parameter.  
 

Structure a0 (Å) B0 (GPa) C’ (GPa) C11 (GPa) C12 (GPa) C44 (GPa) 
Mo(A2) exp. [7, 8] 3.15 268 302 469 167 107 

Mo(A2) 3.1655 262 299 461 162 112 
U(A2) 3.4520 93 -85 37 122 71 

UMo(B2) 3.3980 147 68 192 124 3 
 

Table 1. Results for equilibrium lattice parameter a0, Bulk modulus B0, C´, and elastic 
constants C11, C12 and C44. 

 
3.1 Lattice parameter, Bulk modulus and elastic constants of the disordered 

phase. 
 
As a first result, volume dependence (hidrostatic deformation) of disordered bcc phase 
energy was calculated. In order to determine equilibrium value of volume or lattice 
parameter, we used a second order fit of internal energy to the atomic volume as 
proposed by Birch [8]: 
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where ( )xE G
0 , ( )xV G

0  and ( )xBG
0  are respectively the equilibrium values of internal 

energy, atomic volume and Bulk modulus,  for an ordered intermetallic structure G with 
concentration x of a given atomic species. The function was then minimize and derived 
to obtain equilibrium values of lattice parameter and bulk modulus. Predictions as a 
function of composition are shown in Fig 2 together with experimental values [9]. 
Reported lattice parameter values were measured at room temperature in samples 
quenched from high temperature where U(Mo) disordered bcc phase is stable. The good 
agreement encourages us to rely on bulk modulus calculations. 
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Figure 2. Lattice parameter (a) and bulk modulus (b) as a function of U content xU for 
U(Mo) phase. 

 
As an expansion based in tetragonal and trigonal deformations of the basic clusters, we 
obtained dependence of disordered bcc phase internal energy with deformation. 
Therefore, constant elastic values for C´, C11, C12 and C44 could be derived as a function 
of composition as shown in equations (6), (7) and (8) and plotted in Figure 3. 
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Figure 3. Calculated values of a) C´, and b) C44, for the bcc disordered phase as a 

function of U content. 

 
Our first principles calculations predict a negative value for C´ of U cubic phase. This 
result agrees with experimental knowledge of equilibrium orthorrombic phase at low 
temperatures, reflecting the instability of γ phase with respect to tetragonal distortions. 
This instability is extended in the binary U-Mo system to γ U(Mo) phase, giving also 
place to a negative value of C´ for high values of U content in the disordered solution. 
For smaller values, closer to Mo phase, bcc phase is predicted as stable and positive 
values are obtained. The result implies that a deformation of a retained γ U(Mo) phase 
at low temperature can produce a phase transformation to a more stable structure. 
 
3.2  Finite element analysis.   
 
We can now profit from our calculations to evaluate other thermal and mechanical 
properties. Work is being devoted to estimate mechanical stresses due to differences in 
volume changes between meat and cladding. A Finite Elements Simulation (FES) model 
has been tested for estimation of stresses related to deformation (Fig. 4).  
A diffusion pair was considered under the conditions that there was perfect contact 
between Al surface and U(Mo) surface and that there were no previous residual stresses 
nor diffusion products remaining from the fabrication process. A two dimensional 
rectangle of Al was considered with a hole of were U(Mo) meat was placed. Stresses 
between U(Mo) meat and Al cladding at 530°C are shown in Fig 4 as obtained by FES. 
As it can be seen that in this model, stress are greater along hardest material for stresses 
parallel (x axis) or perpendicular (y axis) to meat,  and concentrate mainly in the 
extremes of the rectangle simulating the U(Mo) foil. 
We are now able to calculate Young (Y) and Poisson (ν) modulus based in our more 
accurate values of elastic constants and obtain a more reliable depict of stresses.   
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Figure 4. Scheme from Finite Elements Simulation of stresses between meat and Al 
cladding under thermal expansion: a) sy, b) sx. 

 
4. Conclusions 

 
We have implemented a method to accurately calculate elastic constants from first 
principles methods. The method can be used to predict mechanical properties even in 
unstable phases, such as U(Mo) bcc phase at low temperature. In combination with 
finite element simulation it can be extended to predict stresses in fuel elements.   
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